Dynamical analysis of LVQ type learning rules

نویسندگان

  • Anarta Ghosh
  • Michael Biehl
  • Barbara Hammer
چکیده

Learning vector quantization (LVQ) constitutes a powerful and simple method for adaptive nearest prototype classification which has been introduced based on heuristics. Recently, a mathematical foundation by means of a cost function has been proposed which, as a limit case, yields a learning rule very similar to classical LVQ2.1 and also motivates a modification thereof which shows better stability. However, the exact dynamics as well as the generalization ability of the LVQ algorithms have not been investigated so far in general. Using concepts from statistical physics and the theory of on-line learning, we present a rigorous mathematical investigation of the dynamics of LVQ type classifiers in a prototypical scenario. Interestingly, one can observe significant differences of the algorithmic stability and generalization ability and quite unexpected behavior for these only slightly different variants of LVQ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Learning Vector Quantization for Classifying Data with Categorical Values

Learning vector quantization (LVQ) is a supervised neural network method applicable in non-linear separation problems and widely used for data classification. Existing LVQ algorithms are mostly focused on numerical data. This paper presents a batch type LVQ algorithm used for classifying data with categorical values. The batch learning rules make possible to construct the learning methodology f...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Analysis of Robust Soft Learning Vector Quantization and an application to Facial Expression Recognition

Learning Vector Quantization (LVQ) [1] is a popular method for multiclass classification. Several variants of LVQ have been developed recently, of which Robust Soft Learning Vector Quantization (RSLVQ) [2] is a promising one. Although LVQ methods have an intuitive design with clear updating rules, their dynamics are not yet well understood. In simulations within a controlled environment RSLVQ p...

متن کامل

LVQ algorithm with instance weighting for generation of prototype-based rules

Crisp and fuzzy-logic rules are used for comprehensible representation of data, but rules based on similarity to prototypes are equally useful and much less known. Similarity-based methods belong to the most accurate data mining approaches. A large group of such methods is based on instance selection and optimization, with the Learning Vector Quantization (LVQ) algorithm being a prominent examp...

متن کامل

Improving Accuracy of LVQ Algorithm by Instance Weighting

Similarity-based methods belong to the most accurate data mining approaches. A large group of such methods is based on instance selection and optimization, with Learning Vector Quantization (LVQ) algorithm being a prominent example. Accuracy of LVQ highly depends on proper initialization of prototypes and the optimization mechanism. Prototype initialization based on context dependent clustering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005